#### **2018 WRF-Chem Tutorial**

#### The team:

Georg Grell
Ravan Ahmadov
Ka Yee Wong
Megan Bela
Li Zhang

CIRES/University of Colorado and NOAA/ESRL

#### Haagen-Smit Prize 2016 awarded to the WRF-Chem paper

1238 citations (Google Scholar)



Available online at www.sciencedirect.com

SCIENCE ODIRECT®

Atmospheric Environment 39 (2005) 6957-6975



www.elsevier.com/locate/atmosenv

Fully coupled "online" chemistry within the WRF model

Georg A. Grell<sup>a,\*</sup>, Steven E. Peckham<sup>a</sup>, Rainer Schmitz<sup>c</sup>, Stuart A. McKeen<sup>b</sup>, Gregory Frost<sup>b</sup>, William C. Skamarock<sup>d</sup>, Brian Eder<sup>e</sup>

The Executive Editors and the Publisher of Atmospheric Environment take great pleasure in announcing the 2016 "Haagen-Smit Prize", designed to recognize *outstanding papers published in Atmospheric Environment*. The Prize is named in honor of Prof. Arie Jan Haagen-Smit, a pioneer in the field of air pollution and one of the first editors of the International Journal of Air Pollution, a predecessor to Atmospheric Environment.

### WRF-Chem

**Community effort** 

Largest contributing groups: NOAA/ESRL, PNNL, NCAR

Other significant contributions from: National and international Universities, CPTEC Brazil, NASA, AFWA

## WRF-Chem

- Chemistry is online, completely embedded within WRF CI
- Consistent: all transport done by meteorological model
  - Same vertical and horizontal coordinates (no horizontal and vertical interpolation)
  - Same physics parameterization for subgrid scale transport
  - No interpolation in time
- Easy handling (Data management)
- Ideally suited to study feedbacks between chemistry and meteorology
- Ideally suited for air quality forecasting on regional to cloud resolving scales

## Why Online?

- Offline modeling introduces errors for air quality applications
  - Error for offline modeling is increasing with increasing horizontal resolution
  - Power spectrum analysis can show the amount of information that is lost in offline runs
- 2-way feedback in-between chemistry and meteorology
  - Process studies relevant for global climate change
  - Ultimately it should lead to improved data assimilation (meteorology) and improved weather forecasts



# What is needed for this type of modeling system?

- 1. Advection and diffusion (all done by WRF)
- 2. Sub-grid scale transport (WRF parameterizations, PBL, convection)
- 3. Some processes that are specific for chemical constituents, but need meteorology: emissions (biogenic, fire, sea salt, dust, volcanic, anthropogenic), dry deposition, wet scavenging
- 4. Treatment of chemical reactions, aqueous phase chemistry, gas phase species and aerosols
- 5. "Chemical" radiation routines (photolysis routines) that provide photolysis rates necessary for (4)
- 6. Capability of feedback from chemistry to meteorology (meteorological radiation and microphysics parameterizations, possibly also convective parameterizations)

### **Chemical Data Assimilation**

#### WRF DART

- NCEP's Grid Point Statistical Interpolation (GSI, 3DVAR) assimilation system can be used with surface chemical data as well as with AOD: Significant improvements in forecasts.
- EnKF assimilation system has been used for WRF-Chem
- Work is on-going with hybrid EnKF/GSI system (NOAA/ESRL and NCAR)
- WRF-Chem adjoint development

# The 2018 WRF-Chem tutorial: Some additional things to remember

- Community effort with extreme complexity
  - The three main developer groups (ESRL, PNNL, NCAR)
     may contribute to very different parts of the modeling system, each requiring high levels of expertise
  - These parts are being developed constantly by these groups (their most advanced versions)
  - The community version may lag a bit behind
  - In the future adding new complexity and code into the modeling system may change (see also changes in WRF)

#### 2018 Tutorial

- In addition to our annual tutorial in Boulder we also organize international tutorials
- Because of the complexity of the required various emissions data sets,
  - The tutorials usually do not provide enough time to cover emissions in detail
  - Although we can not provide you the best emissions data, we will freely give you access to any emissions data set and preprocessors that we get our hands on

## Some important things to take away

- Check out WRF-Chem references to know who is working on what, what should be cited, and maybe where to get additional help if needed.
- We recommend all the users signing up to the new WRF-Chem discussions email group (forum)
- Also, please send us info on your peer reviewed WRF-Chem publications

Please consider: no support currently exists for preparation of tutorials and documentation. The WRF-Chem help desk is minimally supported.

#### **WRF-Chem info on the WEB:**

WRF-Chem web-page: <a href="https://ruc.noaa.gov/wrf/wrf-chem/">https://ruc.noaa.gov/wrf/wrf-chem/</a>

WRF-Chem discussions email list:

https://list.woc.noaa.gov/cgi-bin/mailman/listinfo/wrf-chem-discussions/

FAQ: <a href="https://ruc.noaa.gov/wrf/wrf-chem/FAQ.htm">https://ruc.noaa.gov/wrf/wrf-chem/FAQ.htm</a>

Publications: <a href="https://ruc.noaa.gov/wrf/wrf-chem/References/WRF-Chem.references.htm">https://ruc.noaa.gov/wrf/wrf-chem/References/WRF-Chem.references.htm</a>

For questions contact us at wrfchemhelp.gsd@noaa.gov

## Thank you for coming!

Much success, and we hope you will enjoy the tutorial, as well as your time in Boulder!